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unders tood that more than  one such term may be 
required,  a l though typical ly examples  used require 
only one. This section is in tended to show the prob- 
abilit ies associated with the m i n i m u m  necessary num- 
ber of  such terms in the triclinic case. 

Since the same colour t ranslat ion groups apply  to 
the reciprocal lattice as to the direct lattice, their 
number  and relative f requency will be given by the 
same formulae  as above with the assumpt ion  that a 
typical data set is large enough for the asymptotic  
formulae to be closely approximated.  We can also 
make the correlation that if  a lattice belongs to a 
colour group compris ing one cycle only it will require 
one co-opted term and if  two cycles, two terms etc. 
However, the reciprocal sublatt ice imposed by the 
defining trio in the phase-determining  process must 
be of  odd index to resolve the origin ambiguity.  In 
such a case we must e l iminate  the prime 2 from our 
formulae,  by making  use of  the pr ime-product  form 

~'(s) = I-I (1 - p-S) -~ ' 
p 

with any funct ion ~'(s) replaced by 

I-I ( 1 - p - S )  -~ or (1-2-~)~ ' (s ) .  
p#2 

This is analogous  to the hand l ing  of centred lattices 
by Rutherford (1992b). For example,  while the pro- 
port ion of  all integers that are square-free is 

~'-~(2) = 6/zr 2 = 0 . 6 0 7 9 2 . . . ,  

the proport ion of  odd integers that are square-free is 

[(1 - 2-2) ~'(2)] -t = 8/7r 2 = 0.81057 . . . .  

On this basis,  the asymptot ic  average number  of  tri- 
clinic derivative lattices of  odd index is 

3 x ~ r ( 2 ) ~ ' ( 3 ) n  2 

and, since the fraction of  integers that are odd is ½, 
the fraction of  all lattices having odd index is 

½ x 3 x 7~'(2)~'(3)n2/~'(2)~'(3)n 2 = -~ x 3 x 7= 0.328125. 

Examina t ion  of  the lower part  of  Table 2 shows that 
this ratio is approximated  there. 

To return to the co-opted terms, the expres- 
sion [~'(4)~'(9)] -~ becomes (16/15) x (512/511) 
[~'(4)~'(9)] -~ and sr-~(9) becomes (512/511)~'-~(9). 
When evaluated,  these modif ied expressions give the 
ratio for the cases of  a m i n i m u m  of  one co-opted 
term, or of  two or of  three, to be 

0.98548:0.01447:0.00005. 
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Abstract  

The properties of  the representat ions of  the three- 
d imens iona l  point  groups spanned  by sets of  

0108-7673/93/020300-06506.00 

equivalent  bipoints  are s tudied (characters and reduc- 
tions); these representat ions are either pr incipal  
induced representat ions or monomia l  representat ions 
induced by the subgroups (stabilizet subgroups and 
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extended stabilizer subgroups of the bipoints). The 
properties are also relevant to sets of equivalent tri- 
points or multipoints. Several examples and tables 
are given in the case of the point group 6m2. Applica- 
tions are illustrated by some bipoint and multipoint 
representations of the cyclopropane molecule. 

Introduction 

The concept of the principal induced representations 
(PIRs) of a crystallographic group has recently been 
a subject of increasing interest and several papers 
have been devoted to the properties and applications 
of PIRs (Litvin, 1982; Berenson, Kotzev & Litvin, 
1982; Litvin, Kotzev & Birman, 1982; Masmoudi,  
1990; Masmoudi & Billiet, 1989, 1990a, b). The PIRs 
of a g roup  belong to a more extended category of 
representations designated as monomial representa- 
tions (MRs). 

In the present work, the properties of PIRs and 
MRs are applied to the study of the representations 
of point groups that are spanned by sets of equivalent 
bipoints or of equivalent multipoints. 

For details of the well known mathematical 
definitions and properties mentioned in this paper, 
the reader is referred to the classic works (Gorenstein, 
1968; Kirillov, 1976; Lomont, 1959; Malliavin, 1981; 
Murnagham, 1963; Serre, 1978). For other more 
specialized items and demonstrations, reference is 
made to Masmoudi (1990) and Masmoudi & Billiet 
(1989, 1990a). 

I. Notation 

Consider a point group G and a subgroup K. The 
representation of G spanned by the cosets of the left 
partition of G with respect to K is a PIR of G denoted 
by R ( K ~ G )  or R ( K )  if no confusion is possible; this 
representation may also be defined as the representa- 
tion of G induced by the identity representation of 
K (whose traces are all equal to +1). The trace of an 
element g of G in this PIR is given by 

X[ R(K'~G),  g] = pKCK(g)/ CK, 

where PK is the index of K in G, CK is the number 
of subgroups of G conjugate to K and CK (g) is the 
number of those subgroups containing g. 

The weight of the irreducible representation R,~ of 
G in R ( K ~ G )  is given by 

mK(R,,)=(1/IK[) E x (R~ ,k ) ,  
k ~ K  

where I K[ is the order of K. 
Consider now an alternating representation D(F)  

of a subgroup F of G, that is to say a one-dimensional 
representation of F whose traces are either + 1 or -1 ,  
with equal probability. The representation of G 
induced by D(F)  is a MR denoted M [ D ( F ) t G  ] or, 
more briefly, M I D ( F ) ]  if there is no confusion. The 

next direct-sum property (Masmoudi,  1990) holds, 

R(H'~G)= R ( F ~ G ) +  M[D(F)~G] .  

Here H is the subgroup of index 2 of F whose traces 
are all equal to +1 in D(F) .  Then M[D(F)'~G] is 
equivalently defined by the direct-difference relation, 

M[ D( F)~ G] = R( H~ G) - R( F~ G). 

This relation stems from the fact that the characters 
of these representations are related by the equivalent 
properties: 

xR(  H~ O) = xR(  F~ G) + xM[ D( F)~ O]; 

xM[  D( F)~ G] = x R ( H ~ G ) - xR  ( F --> G ). 

Consider now two distinct points A and B of the 
crystallographic space, the bipoint (A, B) that they 
define and an element g of G. If and only if g 
transforms the point A into the point C and the point 
B into the point D, we say 'g transforms the bipoint 
(A ,B)  into the bipoint ( C , D ) '  and we write 
g ( A , B ) = ( C , D ) .  We say 'g reverses (A,B)" if 
g(A, B) = (B, A) and we write g(A, B) = - (A, B). 

We define the stabilizer subgroup of (A, B) as 
the subgroup G' of G leaving (A, B) invariant [Vg'~ 
G', g'(A, B)= (A, B)]. Finally, we define the exten- 
ded stabilizer subgroup of (A, B) as the subgroup G" 
of G whose elements either leave (A, B) invariant 
or reverse (A, B) [Vg"s G", g"(A, B) = (A, B) or 
g"(A, B) = - ( A ,  B), i.e. g"(A, B)= +(A, B)]. Note 
that G'  is a subgroup of index 2 of G"; alterna- 
tively it may be identical with G". 

lI. Bipoint representations 

We consider two bipoints (A, B) and (C, D) as 
equivalent if and only if there exists at least one 
element g of G such that g(A, B)= + (C, D). Now 
consider the set {(A, B)} of bipoints equivalent to 
(A, B) (note that, in listing the elements of this set, 
we make no distinction between a bipoint and its 
reverse). This set spans a representation R(A,  B) 
of G, a so-called 'bipoint representation',* the 
dimension of which is the number of distinct bipoints 
of {(A, B)}. Two cases may be distinguished. 

* To avoid confusion, we have not used the term 'vector' in this 
paper. The elements (A, B), (C, D) . . . .  ofthe set {(A, B)} are really 
vectors of the vector space A of the representation R(A, B); they 
constitute in fact a basis of the representation R(A, B), so they 
are independent in A. But to each bipoint (A, B), (C, D),... of 
the crystallographic a ffine space corresponds a vector AB, CD, ... 
of the associated vector space. These vectors are not neces- 
sarily independent. For instance, consider the six equivalent 
points A(x, ~, z), B(x, 2x, z), C(2~, ~, z), D(x, ~, ~.), E(x, 2x, ~), 
F(2~, ~, ~) of 6m2. The three bipoints (A, D), (B, E), (C, F) are 
independent and constitute a basis for the representation A~ + E" 
of 6m2. But the three vectors AD, BE, CF are not independent: 
AD = BE = CF. Masmoudi (1990) gives another approach. 
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1. No element of  G reverses the bipoints 

In this case, the extended stabilizer subgroup of  
(A, B) is ident ical  to the stabilizer subgroup H of  
(A, B). The trace of  the element  g of  G in R(A, B) 
is equal  to the number  of  equivalent  bipoints  left 
invariant  by  g and  consequent ly  R( A, B) = R( H~ G). 
This is always the case when  A and B are not 
equivalent,  i.e. do not belong to the same set of  
equivalent  points of  G. 

Example 1. Cons ider  the point  group G = 6 m 2  
(Table 1) and  take as points  A and B the generators 
respectively of  a set n and of  a set g. 

A: XA, XA, ZA'~ B: O, O, z~; 

(A, B) = (XA, XA, ZA; 0, 0, ZB) denoted U~; 

H = m - a - b .  

The set of  bipoints  equivalent  to (A, B) contains six 
elements:  

U1; 

U 2 = ( X A ,  2XA, ZA; 0, 0, ZB); 

U3 = (2~a, ~A, ZA; O, O, Zn); 

U4 = (XA, ~A, ~'A; O, O, ~S); 

U5 = (XA, 2XA, ~'A; O, O, eB); 

U6= (2XA, XA, 7.A; O, O, ~.B). 

The representat ion R ( A , B )  is constructed, as 
follows. Suppose the symmetry  operat ion m~, of G: 
m~(U,)  = U2, m~(U2) = U,,  m~,(U3) = Us, m~(U4) = 

Us, m/,(Us) = U4, m/,(U6) = U6. The matrix of  m/, in 
R(A,  B) is 

0 1 0 0 0 0 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

Table 1. Sets of equivalent points of the point group 
6m2 

The notation is directly derived from that of the space group P6m2, 
No. 187 (International Tables for Crystallography, 1987); the coor- 
dinates are given with respect to the trigonal standard setting. 

12 (o)  1 x , y , z ; ~ , x - y , z ; $ + y , ' 2 ,  z; 
x , y , ~ ;  y , x - y , ~ ;  ~+ y,Y,,~; 
y , ~ , z ;  ~+ y , y , z ;  x , x - y , z ;  
~, ~,, z; ~ + y, y, ~.; x, x -  y, ~. 

6 (n)  m x, ~, z; x, 2x, z; 2~, ~, z; 
x, ~, £; x, 2x, ~,; 2~, ~, ~ 

6 (l) m x , y , O ; p , x - y , O ; ~ + y ,  Yc, O; 
~,X,O; ~ +  y ,y ,O;  x , x - y , O  

3 ( j )  ram2 x, ~, 0; x, 2x, 0; 2~, Y., 0 
2 (g)  3m 0, 0, z; 0, 0, ~, 
1 (a )  6m2 0 , 0 , 0  

Table 2. Characters of the irreducible representations 

A~ 
A~ 
E'  
a~  
a~' 

E" 

of the point group 6m2 
I 11 2x31  3xrnla  mlc 2 x ~  I 3x2o+2b  

1 1 1 1 1 1 
1 1 - 1  1 1 - 1  
2 - 1  0 2 - 1  0 
1 1 1 - 1  - 1  - 1  
1 1 - 1  - 1  - 1  1 
2 - 1  0 - 2  1 0 

Table 3. Principal induced representations of  the point 
group 6m2 

In each case, the inductor subgroup and the irreducible com- 
ponents have been recorded. The PIRs induced by two conjugate 
subgroups are equivalent, i.e. have the same irreducible com- 
ponents. The symbols of irreducible components refer to Table 2. 

R(1) = A ; + A ' 2 + 2 E ' + A ' ~ + A ' ~ + 2 E "  

R(2a+2b ) = A'  l + E ' +  A'~ + E" 

R ( m a ) =  A'I + E ' +  A~ + E" 

R ( m c ) =  a'l + a'2+ 2E '  

R ( 3 ) =  A'I + A'2+ A~ + A '  [ 

R(mcma2a+2b) = A'1 + E'  

R(32) = A~+A'~ 

R ( a m )  = A '  l + A ~  
t " t R(6)  = A 1 + A 2 

R(6m2)  = A '  I 

The trace of  the matr ix  of  m~, in R(A, B) is 
x[R(A,  B), m~b] = 2 ,  i.e. is equal  to the number  of  
equivalent  bipoints  left invar iant  by m lb. By applying 
this process to the 12 elements of  G, one obtains the 
character  of  R(A, B): 

g 11 3 t l l ~l 1 m a  m c  2a+2b 
3 2 m t ~5 212~_b 

! ! 
r t l - a -  b 2 a -  b 

x[R(A, B), g] 6 0 2 0 0 0 

The reduct ion of  R (A, B) is as follows (cf. Tables 2, 3): 

R(A, B ) =  A', + E'+ A~ + E"= R(m_a_b~6m2). 

In the next example,  we will see that one again 
obtains R(A, B)= R(H~G),  even though A and B 
belong to the same set of  equivalent  points of  G, 
provided that no element  of  G s imul taneously  trans- 
forms A into B and B into A. 

Example 2. Consider  again the point  group G = 
6m2 (Table 1) and take A and B in the same set l as 
follows: 

A: XA, YA, 0; B: YA, XA -- YA, 0, 

(A, B)= U~ = (XA, Y A ,  0, YA, XA--YA, 0), 

H =  me. 
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The set {(A, B)} contains six elements: 

U~; 

U2 = (YA, XA-- YA, 0; XA'b YA, Xa,  0)'~ 

U3 = (2A + YA, XA, 0"~ Xa, YA, 0); 

U4 = ()TA, XA, 0; XA q- YA,  YA,  0); 

U5 = (XA-b YA,  YA,  0, XA, X A - -YA ,  0),  

U6~-(XA,  X A - - Y A ,  0"~ fiA, XA, 0). 

Performing the construction of R(A, B) as above, we 
obtain its character: 

l ' 2 x 6 '  t g 11 2x31 3xma  rnc 3x2a+2b 

x[R(A,  B), g] 6 0 0 6 0 0 

The reduction of R(A, B) leads to (cf. Tables 2, 3) 

R(A, B ) =  A'~ + A~+ 2 E ' =  R(mc'~6m2). 

2. Some elements of G reverse the bipoints 

In this event, the stabilizer subgroup H of (A, B) 
is a subgroup of index 2 of the extended stabilizer 
subgroup F of (A, B). The trace of the element g of 
G in R(A, B) is equal to the number of bipoints left 
invariant by g reduced by the number of bipoints 
reversed by g. One has (Masmoudi, 1990): 

R(A, B) = M[ D( F ) t G  ] = R( H t G  ) - R( FTG ). 

A and B necessarily belong to the same set of 
equivalent points of G and there exists at least one 
element of G that at the same time transforms A into 
B and B into A. 

Example 3. G = 6m2. A and B belong to the same 
set l (cf. Table 1). 

A: XA, YA, 0; B: .YA, 2A, 0; H = me; 

F : mcm_a_b2a_ b. 

The set ofbipoints equivalent to (A, B) contains three 
elements: 

U~ = (A, B) = (XA, YA, 0; YA, ~A, 0)'~ 

U2 = ( f ia ,  XA -- YA, 0; XA, XA -- YA, 0); 

U3 = ( XA q- YA, XA, 0"~ XA -b Ya,  YA, 0). 

The symmetry operation m~ of G transforms the 
equivalent points as follows: 

mlb( U, )=-U2;  mlb( U2)= -Ul ;  m~b( U3)=-U3; 

thus, x[R(A,  B), m~] = - 1 .  For the 12 elements of G, 
we have 

x[R(A,  B), g] 

1 l 2 x 6 '  3 x  ' 11 2x31 3 x m  a m c 2a+2b 

3 0 -1 3 0 -1 

The reduction of R(A, B) (cf. Tables 2, 3) is 

R(A, B ) =  A~ + E'= (A~ + A~ + 2E') - (A ' I  + E') 

= R(mc~6m2)-  R(mcm_,,_b2a_b~6m2) 

= M[B2(mcm_,,_b2,,_b)'~6m2]. 

The MR of 6m2 is induced by the alternating rep- 
resentation B2 of m¢m-a-b2~_b whose traces are 
respectively X(1 ~) =x(m~)  = 1 and g(m~_~_b) = 
X(2~-b) = --1. 

The bipoint (A, B) that we have considered is in 
fact oriented, since some suitable symmetry opera- 
tions gO are able to reverse it: g°(A, B ) =  (B, A ) =  
- (A,  B). We consider now the nonoriented bipoint 
[m, BI associated with the oriented bipoint (A, B) and 
we write glA, B[ = [A, B[ if g(a,  B)= ± (A, B). Thus 
the stabilizer subgroup of IA, B[ is identical to the 
extended stabilizer subgroup F of (A, B). Then we 
define the set {IA, BI} of nonoriented bipoints 
equivalent to [A, B[ and the representation R[A, BI 
spanned by this set in a similar way as for oriented 
bipoints. R[A, B[ is a PIR: R[A, B[ = R(F~G).  Com- 
pare this with R(A, B), which is a MR. R(A, B)= 
R( H '~G)-  R( F'~G). 

Note that if no symmetry operation of G rever- 
ses (A, B) then R(A, B ) = R I A  , nl. In all cases, 
X[ RIA, B[, g] = [x[R(A, B), g][" 

Example 3 (cont.). 

1 1 61 I g I l 2x3 '  3xrn~ me 3x 3X2~+2b 

x[RIA, B I, g] 3 0 1 3 0 1 

RIA, B I = A~ + E'= R(mcm_a_b2a_b~6m2). 

Such a procedure may be performed on all bipoints 
(oriented or not) whose constituents are taken in two 
sets (distinct or not) of equivalent points for all three- 
dimensional point groups. As an example, we give 
the complete list of spanned representations in the 
case of the point group 6m2 (Table 4). 

III. Multipoint representations 
Let A, B, C be three distinct points of crystallographic 
space. We say that the symmetry operation g trans- 
forms the tripoint (A, B, C) onto itself if g leaves 
invariant each point A, B, C or if g realizes an even 
permutation of the three points. Likewise we say that 
the symmetry operation g reverses the oriented tri- 
point (A, B, C) if g realizes an odd permutation of 
its points. The definitions of stabilizer subgroup H 
and extended stabilizer subgroup F are the same as 
for bipoints. Now consider two tripoints (A, B, C) 
and (D, E, F);  we say that the symmetry operation g 
transforms ( A , B , C )  into (D ,E ,F)  if g ( A ) =  
D, g( B) = E, g( C) = F up to an even permutation and 
we write g(A, B, C) = (D, E, F). If g transforms 
A, B, C in D, E, F up to an odd permutation we write 
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Table 4. Representations of the point group 6m2 
spanned by sets of equivalent bipoints 

The PIRs refer to Table 3. The Wyckoff  types refer to Table 1 and 
the coordinates x, y, z have the usual meaning (see International 
Tables for  Crystallography, 1987). The notat ion o-n  means the set 
o f  bipoints equivalent  to the bipoint  o f  which the first point is any 
point of  a set of  equivalent points of  Wyckoff type (o) and the 
second point is any point o f  a set of  type (n). In the same way, 
j - j  relates to a bipoint  for which the points are any two distinct 
points of  the same set of  type (j) .  l l - l  2 refers to a bipoint for which 
the first point  is any point o f  a set of  type (l) and the second point 
is any point o f  a second (distinct) set of  type (l). When the points 
of  the bipoint  are not  arbitrary, their coordinates are indicated,  as 
in o(x, y, z ) -o (~ ,  ~, ~) or n t ( x t ,  x l ,  zl)  - n2(x2, 2x2, z2), in this last 
case there is no relation connecting x~ to x 2 and z~ to z 2 but  it is 
forbidden to have x t = x2 and z~ -- z 2 simultaneously.  However,  the 
notat ion n (x~, xl ,  z~)-j(x2,2x2, 0) signifies that  there is no relation 
connecting x~ to x z but x~ = x 2 is not  forbidden. For bipoints that 
may be reversed by some elements of  6m2, two representations 
are given: the first is the MR spanned by the oriented bipoint,  the 
second is the PIR spanned by the nonoriented bipoint.  

ot-o2: R(1) 
o(x, y, z)-o(fi, x - y ,  z): R(I) 
o(x, y, z)-o(~, x - y ,  ~,): R(1) 
o(x, y, z)-o(x, y, ~): R( l )-R(mc) = M[ A"( rac) ]; R( m~) 
o(x, y, z)-o(f,, 2, z): R(1)-R(m_a_b) = M[A"(m_a_b)]; R(m_o_b) 
o(x, y, z)-o(fi, .~, 2): g(1)-R(2a_b) = M[B(2a_b)]; R(2a_b) 
o-n: R(1) 
o-l: R(1) 
o-j: R(1) 
o-g: R(1) 
o-a: R(1) 
hi(X1, -~1, zl)-n2(x2, .x2, z2): R( m-a-b) 
nl(xI, Xl, zl)-n2(x2,2x2, z2)" R(I) 
n(x, 2, z)-n(x, 2x, z): R(1)-R(mb) = M[ A"(mb)]; R(mb) 
n(x, 2, z)-n(x, ~, ~,): R(m_~_b)-R(mcra a_b2~_b) 

= M[Bl(m¢m_~_b2~_b)]; R(m~m-~-b2~-b) 
n(x, 2, z)-n(x, 2x, ~): R(1)-R(2-2~_b) = M[B(2_2a_b)]; R(2_2~_ b) 
n-l: R(1) 
n(xl , xl, zO-j(x2, x2,0): R(m-a-b ) 
n( xl , xl , zO-J(x2, 2x2, 0): R(1) 
n-g: R(m_o_b) 
n-a: R(m_a_b) 
Ir12: R(ra~) 
l(x, y, 0)-l(.9, x - y ,  0): R(m,)  
i(x, y, O)-l(fi, Y,, 0): R(m~) - R(m~m-~-b2~_b) 

= M[BE(mcm_~_b2a_b)];R(mcm_a_b2~_b) 
l-j: R(m~) 
l-g: R(1) 
l-a: R(m~) 
it(x1, xl, 0)-j2(x2, x2,0): R(m¢m_~_b2~_b) 
j l (xl ,  ~ ,  0)-jz(xz, 2X2, 0): R(mc) 
j-j:  R( mc)-R( mem_a_b2a_~,) = M[ B2( mcm_~_b2a_b) ]; R( mcm_a_b2,_b ) 
j -g:  R(m_o_b) 
j-a:  R(mcrn_a_~2a_b) 
g~-g2: R(3m) 
g-g: R ( 3 m ) -  R(6m2) = M[ A~(6m2) ]; R(6m2) 
g-a: R(3m) 

g(A, B, C ) = - ( D ,  E, F). The definitions and the 
properties of equivalent tripoints, set of equivalent 
tripoints and representations spanned by such a set 
are essentially the same as for bipoints. The same is 
true for nonoriented tripoints. 

Example 4. As an application, consider the cyclo- 
propane molecule C3H6, the point group of which is 
6m2; the three C atoms [Wyckoff type (j), Table 1] 
and the six H atoms [Wyckoff type (n)] are respec- 
tively labelled A, B, C and D, E, F, G, H, I (Fig. 1). 
In Tables 5 and 6, some bipoint and tripoint rep- 

Table 5. Characters of some oriented or nonoriented 
bipoint or tripoint representations of the molecule of 

R(A, D) 
R(D,E)  
RID, El 
R(A, B) 
RIA, Bt 
R(A~ D, G) 
RJA, D, G] 
R ( A , B , E )  
R(D, E, F) 
RID, E, El 
R(A, B, C) 
RIA, B, CI 

cyclopropane 

11 2x31 3xm2a I 2x~1 I mc 3 X 2a+2b 

6 0 2 0 0 0 
6 0 -2  0 0 0 
6 0 2 0 0 0 
3 0 -1 3 0 -1 
3 0 1 3 0 1 
3 0 1 -3 0 -1 
3 0 1 3 0 1 

12 0 0 0 0 0 
2 2 -2  0 0 0 
2 2 2 0 0 0 
1 1 - 1  1 1 - 1  
1 1 1 1 1 1 

resentations built on the atoms of this molecule are 
given. 

All considerations apply to both oriented and non- 
oriented multipoints. However, when the number of 
points of the multipoints is greater than three, an 
extra juncture appears because there may be several 
ways to construct an oriented multipoint (or its 
reverse) starting from a given nonoriented multipoint. 

Example 5. Consider the cyclopropane molecule 
(Fig. 1) and the nonoriented multipoint ID, E, (3, HI, 
for which the stabilizer subgroup is m c m b 2 _ 2 a _  b. The 
PIR spanned by this multipoint and its equivalents 
is  R ( m c m b 2 _ E a _ b ' ~ 6 m 2  ) = A~ + E ' .  T h e r e  a r e  t h r e e  

ways to obtain an oriented multipoint associated with 

F E 

I G ~ ~ D  A H 

F 

Fig. 1. The cyclopropane molecule: perspective and plan 
viewpoints. 
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Tab le  6. S o m e  or iented  a n d  nonor ien ted  bipoint  a n d  
tripoint representa t ions  o f  C3H6 as P I R s  a n d  M R s  o f  

the po in t  group 6 m 2  

R(A, D) = R(m-a-b) 
R( D, E) = R(1)-R(mb) = M[ A"(mb)] 
RID, El = R(mb) 
R( A, B) = R( rnc)-R( mcmb2_2a_b) = M[  B2( mcmb2_2a_b) ] 

RI A, BI = R(rncmb2-2a-b) 

R( A, D, G) = R( m_a_b)-R( mcm_a_b2a_b ) = M[ Bl( mcm-a-b2a-b) ] 
RIA, D, GI = R(mcm-a-b2a-b) 
R(A,B,E)=R(I) 
R( D, E, F) = R(3)-R(3m) = M[A2(3m)] 
RID , E, F] = g(3m) 

R( A, B, C) = R( 6)-R(6m2) = M[ A'2(6m2) ] 
R[A, B, C I = g(6m2) 

]D, E, G, HI ;  they  are i l lus t ra ted  in Fig. 2, where  the 
o r i en ta t ions  are s h o w n  by  arrows.  For  the first case, 
the  s tabi l izer  subg roup  is mb and  the M R  s p a n n e d  
by  the o r i en ted  m u l t i p o i n t  and  its equ iva len ts  is (cf. 

D E 

G H 
(a) 

(b) 

E I 
H 

D E 

G H 
(c) 

Fig. 2. Three ways to obtain an oriented multipoint starting from 
the nonoriented multipoint I D, E, G, H[. (a) The stabilizer sub- 
group is rob. (b) The stabilizer subgroup is me. (c) The stabilizer 
subgroup is 2-2a-b. 

Tables  2, 3): 

R ( m b ' ~ 6 m 2 ) -  R ( m c m b 2 _ 2 a _ b ~ 6 m 2 )  

= M [ B , ( m e m b 2 _ 2 a _ b ) ~ 6 m 2 ]  

= A ' ~ +  E". 

As to the  s econd  case, the  s tabi l izer  subg roup  is mc 
and  the  s p a n n e d  r e p r e s e n t a t i o n  is (cf. Tables  2 and  3) 

R ( m c ' ~ 6 m 2 ) -  R(mcmb2_2a_bT( )m2)  

= M [  a2(mcmb2-2,,-b)'~()m2] 

= A ~ + E ' .  

In the last  case, the s tabi l izer  subg roup  is 2-2a-b  and  
the s p a n n e d  r ep re sen t a t i on  is (cf. Tables  2 and  3) 

R (2_2a_b~ '6m2)-  R(mcmb2_: , , _b '~6m2)  

= M [ A 2 ( m c m b 2 _ 2 a _ b ) ~ 6 m 2  ] 

- " E". - - A l +  

The  a u t h o r  wishes  to t h a n k  Dr  Korch i  M a s m o u d i  
for  n u m e r o u s  c lar i f ica t ions  o f  m a t h e m a t i c a l  con-  
cepts a n d  m a n y  sugges ted  i m p r o v e m e n t s  in the  
p resen ta t ion .  
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